Null-Space Preconditioners for Saddle Point Systems
نویسندگان
چکیده
We will present theory that underpins the use of null-space preconditioners, giving eigenvalue bounds that show that the eigenvalues of the preconditioned system are clustered when a good approximation to the null-space matrix can be found. Additionally, we will describe how two of the family of preconditioners, although indefinite and non-symmetric, can be applied with a Krylov method with a short term recurrence.
منابع مشابه
On Nonsingular Saddle-Point Systems with a Maximally Rank Deficient Leading Block
We consider nonsingular saddle-point matrices whose leading block is maximally rank deficient, and show that the inverse in this case has unique mathematical properties. We then develop a class of indefinite block preconditioners that rely on approximating the null space of the leading block. The preconditioned matrix is a product of two indefinite matrices, but under certain conditions the con...
متن کاملOPINS: An Orthogonally Projected Implicit Null-Space Method for Singular and Nonsingular Saddle-Point Systems∗
Saddle-point systems appear in many scientific and engineering applications. The systems can be sparse, symmetric or nonsymmetric, and possibly singular. In many of these applications, the number of constraints is relatively small compared to the number of unknowns. The traditional null-space method is inefficient for these systems, because it is expensive to find the null space explicitly. Som...
متن کاملH - matrix preconditioners for saddle - point systems from meshfree discretization 1
In this paper we describe and compare preconditioners for saddle-point systems obtained from meshfree discretizations, using the concepts of hierarchical (or H )matrices. Previous work by the authors using this approach did not use H -matrix techniques throughout, as is done here. Comparison shows the method described here to be better than the author’s previous method, an AMG method adapted to...
متن کاملH-matrix preconditioners for saddle-point systems from meshfree discretization∗
In this paper we describe and compare preconditioners for saddle-point systems obtained from meshfree discretizations, using the concepts of hierarchical (or H-)matrices. Previous work by the authors using this approach did not use H-matrix techniques throughout, as is done here. Comparison shows the method described here to be better than the author’s previous method, an AMG method adapted to ...
متن کاملSubstructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions
This paper is concerned with the saddle-point problems arising from edge element discretizations of Maxwell’s equations in a general three dimensional nonconvex polyhedral domain. A new augmented technique is first introduced to transform the problems into equivalent augmented saddlepoint systems so that they can be solved by some existing preconditioned iterative methods. Then some substructur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 37 شماره
صفحات -
تاریخ انتشار 2016